THEORY GROUP THOUGHTS ON FUTURE (AND CURRENT) EXPERIMENTS

YOUR LUNCH-TIME ENTERTAINMENT

Summarizer: Frank Petriello

ANL retreat December 15, 2010

Goals of the talk

- Meant to generate discussion and audience input
- What was asked of theory group members:
 - What do you think are the most interesting experiments that the entire particle physics field should pursue in the next 10 years?
 - What role do you see for ANL in these efforts? Which are the most important to pursue and why?
 - How would your research direction be affected if ANL got involved in these experiments?
- Additional item answered: what measurements do you think it is important to pursue at the LHC+upgrades?

Big questions

- What is the origin of electroweak symmetry breaking?
- What comprises the dark sector of the universe?
- What explains the matter-antimatter asymmetry in the universe?
- Is there an explanation for the differences in the quark and lepton flavor sectors? Why does an extreme range of Yukawa couplings exist?

Experimental hints

- Excellent agreement of LEP/SLC data with Standard Model ⇒ severe restriction on SM extensions
- Convincing evidence for dark matter

LHC studies

Obvious things at the LHC

- Find or exclude the SM Higgs!
- Are there any new resonances?

Multi-jets/leptons+missing E_T: SUSY, generic dark

matter signature

Don't know top-quark EW couplings!

WW scattering (Cosmas)

Strongest theoretical argument needing a Higgs; without one, need something else to unitarize. Answer likely to be encoded in WW scattering.

$$\mathcal{L}_{eff} = \mathcal{L}_{2} + \mathcal{L}_{4} + \mathcal{L}_{6} + \dots, \quad \mathcal{L}_{n} = \mathcal{O}(p^{n})$$

$$\mathcal{L}_{2} = \frac{1}{4} v^{2} \text{tr}(\hat{D}_{\mu} \hat{U}^{\dagger} \hat{D}_{\mu} \hat{U}) - (\bar{\rho} - 1) \frac{v^{2}}{8} \left[\text{tr}(\hat{T} \hat{V}_{\mu}) \right]^{2}$$

$$+ \frac{1}{2g^{2}} \text{tr}(\hat{W}_{\mu\nu} \hat{W}_{\mu\nu}) + \frac{1}{2g'^{2}} \text{tr}(\hat{B}_{\mu\nu} \hat{B}_{\mu\nu})$$

- Study WW scattering in vector-boson fusion; look for deviations from SM
- High luminosity measurements keep pursuing LHC

Unexpected opportunities (Ed, Qinghong)

- New physics with big cross sections, low backgrounds could be discovered early; don't miss them!
- Example: color sextet, octet bosons. Color-sextets decay to same-sign tops.

Probes of QCD dynamics (Geoff)

We rely on factorization for making all hadron-collider predictions; a question whether non-relativistic QCD describes quarkonium production at Tevatron

J/ψ polarization not described by NRQCD; disagreements between CDF and Do data

- © Can ATLAS measure polarization in direct production at high p_T?
- Measurements should be differential in rapidity also at high momentum (QCD can predict this)

Bread and butter (Seth)

Many important, fundamental measurements at Tevatron weren't updated at higher luminosities

Z(->ee) forward-backward asymmetry	A_FB consistent with SM (chi2/DOF 10.2/12)	364 pb ⁻¹	Public Note
Z(->tau h tau e) cross section	σ(ppbar->Z) = 264 ± 23 (stat) ± 14 (sys) ± 15 (lum)	350 pb ⁻¹	PRD 75, 092004
W cross section with forward electrons	σ(ppbar -> W) = 2.796 ± 0.013 (stat) + 0.095 - 0.090 (syst) ± 0.168 (lum) nb	223 pb ⁻¹	PRL 98, 251801 (hep-ex/0702037)

Possible PDF constraint

- W cross section measured in muon channel, Figures, 3/10/05, 96 pb-1
- Measurement of W→en and Z→ee Cross Sections, Figures; 8/13/04, 177 pb-1
- Measurement of Z→mm Cross Section, Figures; 8/11/04, 148 pb-1
- Did collaborations ever attempt to monitor luminosity with the W/Z cross section measurements?

Double-parton scattering (Ed)

Claim that DPS contribution can be measured in pp→bbjj

Future experiments

Future linear colliders

Assuming Nature is kind, a future TeV-scale linear collider will be needed to determine high-scale theory from LHC discoveries... an obvious direction for the division to continue pursuing.

Dark matter (Jamie)

Promises to be an extremely active area for the next 10 years. Even some tantalizing hints...

Dark matter

- Dark matter searches have a strong connection with the astrophysics group activities, and are an interest of the theory group. How can the division become involved? Any direct/indirect detection experiment that we contribute to?
- Can a new annual-modulation experiment to check DAMA be performed (or is the DAMA exposure too high to redo in finite time)?

EDMs (Carlos)

CP violation in the SM not sufficient to explain baryon-antibaryon asymmetry. Electric dipole moments are an excellent probe of new sources of CP violation.

System	Present Limit (e-cm)	Group	Future Sensitivity	Standard Model (CKM)
$e^ e^ e^-$	$1.6 \times 10^{-27} \text{ (90\% CL)}$	Berkeley Yale LANL	$ \sim 10^{-29} \\ \sim 10^{-30} $	< 10 ⁻³⁸
μ	$1.05 \times 10^{-18} \ (90\% \ CL)$	CERN BNL	$\sim 10^{-24}$	$< 10^{-36}$
n n n	$6.3 \times 10^{-26} \text{ (90\% CL)}$	ILL PSI LANL	1.5×10^{-26} 7×10^{-28} 2×10^{-28}	$1.4 \times 10^{-33} \rightarrow 1.6 \times 10^{-33}$
¹⁹⁹ Hg ²²⁵ Ra ¹²⁹ Xe <i>D</i>	$2.1 \times 10^{-27} \text{ (95\% CL)}$	Seattle Argonne Princeton BNL	5×10^{-28} 10^{-28} 10^{-31} $\sim 10^{-27}$	$\lesssim 10^{-33}$ $\lesssim 10^{-34}$

phases	CASE I		CASE II			
	d _{T1}	dn	dHg	dn	d_n	d_{Hg}
ϕ_1	weakly	weakly	weakly w. small $tan\beta$	not	not	not
ϕ_2	strongly	strongly	strongly	weakly w. small tanβ	weakly w. small $tan\beta$	not
ϕ_2	not	strongly	strongly	not	weakly w. small $tan\beta$	weakly
ϕ_e	weakly	not	not	not	not	not
φu	not	weakly	strongly	not	not	not
φu	not	strongly	strongly	not	not	not
ϕ_{μ}	not	not	not	not	not	not
ϕ_c	not	not	not	not	not	not
ϕ_x	not	not	not	not	not	not
фе	weakly	weakly	weakly	weakly	weakly	weakly
øs .	not	weakly	weakly	not	weakly	weakly
фт	not	not	not	not	not	not

SUSY phases

EDMs

- Proposal in the Physics division (Z.-T Lu et al.) to use radium to improve EDM searches; sensitivity to CP-odd effects expected be 3 orders of magnitude stronger than mercury. Severe restrictions on MSSM baryogenesis.
- Is there a way for HEP to get involved in this? Such low energy precision searches provide complementary information to what LHC tells us.

- Right now a 3.10 deviation from the SM
- Theory has settled down with ete data from Frascati, Novosibirsk, no need to rely on tau and isospin
- Proposal to do at FNAL with factor of 4 smaller experimental error; improvements in theory would lead to 70

g-2

- Possibility of a major discovery here; interest in the division in getting involved? Any expertise the HEP division can offer? Overlap with the physics division?
- Definite role for theory group; both in analyzing hadronic light-by-light, thinking about how new physics can contribute... some technically challening problems to solve.

mu2e

What about muze? Physics case is strong.

Conclusions

- Many exciting opportunities the division could possibly pursue.
- Some (linear colliders) depend on LHC data.
- Others (EDMs, g-2) can be done for low cost, and will provide interesting complementary information to the LHC. Potential for physics division collaboration.
- We'd like to know what the rest of the division thinks!